STONY POINT HS -- ROUND ROCK ISD

Design Problem – Marble Sorter Project 3.3.1 – VEX and RobotC

Adam Frankovic, Bianca Diaz, Fabian Perea, & Kevin Calderon April 12, 2017

TABLE OF CONTENTS

Design Brief

Final Design Pictures

RobotC Code

Reflections

References

<u>Appendices</u>

Dispenser Brainstorming

Sorter Brainstorming

Bins Brainstorming

Design Modifications

Design Brief

Client Company:	National Recreation and Park Association (NRPA)
Target Consumer:	Society
Designer(s):	Adam Frankovic, Bianca Diaz, Fabian Perea, & Kevin Calderon
Problem Statement:	The National Recreation Park Association (NRPA) has asked your team to develop a solution to a growing problem in their parks. The association has placed dumpsters for recyclable material throughout the parks. They have a sorting facility; however, they need a device that will sort the recyclable material.
Design Statement:	Design, model, and test a device that will separate recyclable materials.
Problem Statement:	 Separation process must be fully automated. Must successfully separate commingled recyclable materials into individual holding bins. Recyclable materials include 3 different ½-in. material spheres totaling 15. Examples could include steel, aluminum, wood, opaque plastic, and clear plastic. Must be efficient—2 minute max for completion of sorting process. Must not be larger than 24"L x 12"W x 18"H Must make efficient use of materials.

FINAL DESIGN PICTURES

<Include pictures of your final robot. You must have a minimum of 2 pictures of each part of your project Dispenser, Sorter, and Bins, as well as at least 2 over all pictures of your robot.>

ROBOTC CODE

rnFlashlightOn(flashLight, 127);	//Turns flashlight on
ile(1==1)	//Sets condition to be true
<pre>if(SensorValue(lineFollower)<=2700 && (SensorValue(lineFollower)>=2400)) startMeton(sightWeton = 23 5);</pre>	<pre>//The sensor value reads in between the two variables I set //The motor turns on at the set speed</pre>
startmotor (Fightmotor, -23.3),	//The motor will way for 10 seconds
stopMotor(rightMotor):	//The motor will stop
scoped to (lighthotto),	//The motor will wait 1 5 seconds
if/SensorWalme/lineFollower) <= 2300 ff (SensorWalme/lineFollower) >=2000))	//The sensor value will read in between two variable I set
(Sensorvalue(Interollower) <- 2000 && (Sensorvalue(Interollower) >-2000))	//ine sensor value will lead in between two vallable i set
setServo/servoMotor2 _40);	//The 2nd serve motor sets to position _40
wait(5):	//The motor will wait for 5 seconds
setServo(servoMotor =127):	//The 2nd serve motor gets set to postion -127
wait(1):	//The motor will wait for 1 second
setServo(servoMotor 0):	//The serve motor gets sets back to original postion
setServo(servoMotor2 5):	//The other serve motor gets set back to its original positi
3	,, the oblice beens motor geod bed bash of 100 original poblor
else if(SensorValue(lineFollower)<=350 && (SensorValue(lineFollower)>=50))	//The sensor value reads in between the two variables I set
{	55-9755 ALTERATE SECTOR STRATE ALTER SCHULTT FLA AND STRATEMENT A ALTER
setServo(servoMotor2, 50);	//The 2nd servo motor sets to position -40
wait(.5):	//The motor will wait for .5 second
<pre>setServo(servoMotor, -127);</pre>	//The 2nd servo motor gets set to postion -127
wait(1);	//The motor will wait for 1 second
setServo(servoMotor,0);	//The servo motor gets set back to its original position
setServo(servoMotor2, 5);	//The 2nd servo motor gets sets back to its original position
}	
else if(SensorValue(lineFollower)<=1300 && (SensorValue(lineFollower)>=400))	//The sensor value reads in between the two variables I set
<pre>setServo(servoMotor, -127);</pre>	//The servo motor gets set to a position of -127
<pre>wait(.3);</pre>	//The servo motor waits 3 seconds
	//The serve motor goes back to its original postion

Reflections

A) How well did you accomplish your objectives, discuss your success for EACH of the 6 constraints?

-Our marble sorter was successful and simple. The marbles that we chose were; metal, wood, and opaque plastic. Our intake roller would release 1 marble at a time and would stop for the marble to be read by the light sensor. Then the servo motor would adjust itself into the right position for the marble to fall in for its specific material. It also sorted every marble out in under a minute! Our design met the correct measurements and didn't go over it, it also did not use many materials because that would make the sorter more expensive but we did make great use out of the materials that we chose to work with.

B) What would your team do differently with your design solution (min 3 things) and why?

- 1.) Made it smaller, to be more cost efficient.
- 2.) Made a better design to where we wouldn't need something to keep the marbles in place from jumping out of place.
- 3.) Made a smaller code, there could've been less code.

C) Do the results fulfill the problem statement, if not what was missing?

-Our results meet all the requirements and it wouldn't cost them much to build it.

D) If you had more time, what would you do differently or what would you add. (*Give a minimum of one thing for each PART: Dispenser, Sorter, Bins*)

-One thing that we would change about our dispenser is make it dispense the marble sorter faster and smoother. For the sorter we would place the line follower in a different position to get better results. Lastly for our bins we would chose better bins because the bins we were using started to bend a little.

References

https://www.youtube.com/watch?v=rpqIDKP5bBc https://www.youtube.com/watch?v=pbOEmqHfaqo https://www.youtube.com/watch?v=GnluqACRATs https://www.youtube.com/watch?v=bmbXOAaNtqg https://www.youtube.com/watch?v=D1_95iwljyw

https://www.youtube.com/watch?v=rpqIDKP5bBc https://www.youtube.com/watch?v=pbOEmqHfaqo&t=1s https://www.youtube.com/watch?v=GnluqACRATs https://www.youtube.com/watch?v=0uQV_fqHV8M https://www.youtube.com/watch?v=F1-Ga0WmfXQ

https://www.youtube.com/watch?v=EV92YD1_Sd4 https://www.youtube.com/watch?v=JreLXx4o8UI https://www.youtube.com/watch?v=7hkcfO7Bh44 https://www.youtube.com/watch?v=P87aMXONZi0 https://www.youtube.com/watch?v=pbOEmqHfaqo

APPENDICES

DISPENSER BRAINSTORMING

PLTW Engineering

Decision Matrix Template

Criteria											
Ideas	Accuracy	Simplicity- Building	Simplicity- Coding	Time Spent Building			Totals				
1	2	2	4	3			11				
2	3	3	3	4			13				
3	3	4	4	4			15				
4	3	2	2	2			9				

Key: 4 best -- 1 worst Must include a minimum of 4 criteria.

> © 2012 Project Lead The Way, Inc. Principles Of Engineering Decision Matrix Template – Page 1

FINAL:

Sorter Brainstorming

PLTW Engineering

Decision Matrix Template

Criteria												
Ideas	Accuracy	Simplicity	Speed	Time Spent On Building			Totals					
Light Sensor	2	3	3	4			12					
Light Sensor + Seesaw	3	4	4	2			13					
Flashlight + Line Tracker	2	2	2	3			9					
Limit Switch	2	3	3	4			12p					

Key: 4 best -- 1 worst Must include a minimum of 4 criteria.

> © 2012 Project Lead The Way, Inc. Principles Of Engineering Decision Matrix Template – Page 1

FINAL

BINS BRAINSTORMING

PLTW Engineering

Decision Matrix Template

Criteria												
	Simplicity	Speed	Accuracy	Reliability								
Ideas							Totals					
1	4	3	3	3			13					
2	2	1	3	2			8					
3	2	2	3	3			10					
				-								
4	3	3	2	3			11					

Key: 4 best -- 1 worst Must include a minimum of 4 criteria.

> © 2012 Project Lead The Way, Inc. Principles Of Engineering Decision Matrix Template – Page 1

FINAL

Metal Parts Motion Parts Vex Base Plates 1 Intake Roller 12"Long Linear Slide Track 0 6-tooth Sprocket 17.5"Long Linear Slide Track 0 6-tooth Sprocket 17.5"Long Linear Slide Track 0 12-tooth Sprocket 17.5"Long Linear Slide Track 0 12-tooth Sprocket Chassis - Bumper 0 12-tooth Sprocket Chassis - Rails 0 24-tooth Sprocket Plate 5x5 holes 0 36-tooth Sprocket Plate 5x5 holes 0 36-tooth gears Plate 5x5 holes 0 36-tooth gears Plate 5x5 holes 0 36-tooth gears Angles 0 36-tooth gears C-Channel 0 19-tooth rack gear C-Channel 0 19-tooth pears Diput/Output/Motors 0 24-tooth bevel gear Line Tracker 0 19-tooth and pully Parts Bumper Switch 0 10 110 moth Inhoutloneter 0 10 110 moth <td< th=""></td<>
Vex Base Plates1Intake Roller 12^{*} Long Linear Slide Track06-tooth Sprocket 17.5^{*} Long Linear Slide Track06-tooth Sprocket 17.5^{*} Long Linear Slide Track012-tooth SprocketChassis - Bumper024-tooth SprocketChassis - Bumper024-tooth SprocketChassis - Rails024-tooth SprocketChassis - Rails030-tooth SprocketChassis - Rails030-tooth SprocketPlate 5x5 holes112-tooth gearsPlate 5x5 holes036-tooth gearsPlate 5x25 holes036-tooth gearsPlate 5x25 holes036-tooth gearsPlate 5x25 holes036-tooth gearsBar 1x25 holes036-tooth gearsChannel019-tooth gearsLine Tracker024-tooth bevel gearLine Tracker019-tooth rack gearBumper Switch019-tooth rack gearLine Tracker019-tooth rack gearLine Tracker019-tooth rack gearDottical Shaft Encoder0
12" Long Linear Slide Track06-tooth Sprocket17.5" Long Linear Slide Track012-tooth Sprocket17.5" Long Linear Slide Track012-tooth SprocketChassis - Bumper024-tooth SprocketChassis - Bumper024-tooth SprocketChassis - Rails024-tooth SprocketPlate 5x5 holes030-tooth SprocketPlate 5x5 holes030-tooth SprocketPlate 5x5 holes030-tooth SprocketPlate 5x5 holes112-tooth gearsPlate 5x5 holes034-tooth gearsPlate 5x5 holes084-tooth gearsPlate 5x5 holes084-tooth gearsPlate 5x25 holes084-tooth gearsLine Tracker010-tooth gearsLine Tracker010-tooth hovel gearLine Tracker010Platentiometer010Platentiometer010Ultrasoric
17.5" Long Linear Slide Track012-tooth SprocketChassis - Bumper018-tooth SprocketChassis - Bumper024-tooth SprocketChassis - Rails024-tooth SprocketChassis - Rails030-tooth SprocketPlate 5x5 holes112-tooth gearsPlate 5x5 holes036-tooth gearsPlate 5x5 holes112-tooth gearsPlate 5x25 holes084-tooth gearsPare 5x25 holes084-tooth gearsProtered019-tooth rack gearChannel019-tooth rack gearLine Tracker024-tooth bevel gearLine Tracker019-tooth rack gearLine Tracker019-tooth bevel gearLine Tracker010Line Tracke
Chassis - Bumper018-tooth SprocketChassis - Rails024-tooth SprocketChassis - Rails024-tooth SprocketPlate $5x5$ holes030-tooth SprocketPlate $5x25$ holes112-tooth gearsPlate $5x25$ holes036-tooth gearsPlate $5x25$ holes024-tooth gearsAngles019-tooth rack gearC-Channel019-tooth rack gearLostet024-tooth bevel gearLine Tracker024-tooth bevel gearLine Tracker019-tooth rack gearLine Tracker024-tooth bevel gearLine Tracker019-tooth rack gearLine Tracker024-tooth bevel gearLine Tracker024-tooth bevel gearLine Tracker019-tooth track (pair)Potentiometer019-tooth track (pair)Potentiometer01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor01010-tooth gearsLight Sensor </td
Chassis - Rails0 24 -tooth SprocketPlate 5x5 holes0 30 -tooth SprocketPlate 15x5 holes112-tooth gearsPlate 5x25 holes0 36 -tooth gearsPlate 5x25 holes0 84 -tooth gearsPart 1x25 holes0 84 -tooth gearsAngles0 84 -tooth gearsC-Channel0 19 -tooth nack gearCostent0 10 -tooth nack gearCostent0 10 -tooth bevel gearLine Tracker0 0 Line Tracker0 0 Bumper Switch0 0 Line Tracker0 0 Intertower0 0 Intertower0 0 Potentiometer0 0 Optical Shaft Encoder0 0 Ultrasonic Range Finder0 0 Ultrasonic Range Finder0 0 Light Sensor0 0 J-Wire Servo (maximum 2)0 0 J-Wheel0 0
Plate 5x5 holes030-tooth SprocketPlate 15x5 holes112-tooth gearsPlate 5x25 holes036-tooth gearsPlate 5x25 holes036-tooth gearsBar 1x25 holes084-tooth gearsBar 1x25 holes084-tooth gearsCochannel084-tooth gearsAngles084-tooth gearsCochannel084-tooth gearsCochannel084-tooth gearsCochannel019-tooth rack gearCochannel024-tooth bevel gearLine Tracker00Differential frame0Line Tracker00Line Tracker00Line Tracker00Differential frameLine Tracker00Differential frameLine Switch00Differential frameLine Switch00Differential frameLine Switch00Differential frameLine Switch00Differential frameLine Switch00Differential frameLine Switch00Differential frameLine Switch0Differential frameDifferential frameDifferential frameDifferential frameDifferential frameDifferential frameDifferential frameDifferential frameDifferential frameDifferential frame
Plate 15x5 holes112-tooth gearsPlate 5x25 holes036-tooth gearsBar 1x25 holes036-tooth gearsBar 1x25 holes084-tooth gearsAngles084-tooth gearsC-Channel019-tooth rack gearC-Channel019-tooth rack gearC-Channel019-tooth rack gearC-Channel019-tooth rack gearC-Channel024-tooth bevel gearInput/Output/Motors024-tooth bevel gearLine Tracker00Differential frameLine Tracker00Claw kit assemblyLine Tracker00Claw kit assemblyLinit Switch00Claw kit assemblyPotentiometer00Claw kit assemblyDotical Shaft Encoder0Claw kit assemblyUltrasonic Range Finder0Chain Links 10 inchLight Sensor02.75" Wheel
Plate 5x25 holes0 36 -tooth gearsBar 1x25 holes1 60 -tooth gearsBar 1x25 holes0 84 -tooth gearsAngles0 84 -tooth gearsC-Channel0 84 -tooth gearsC-Channel0 19 -tooth rack gearC-Channel0 19 -tooth rack gearC-Channel0 19 -tooth rack gearLine Tracker0 10 -tooth rack gearInput/Output/Motors0 24 -tooth bevel gearLine Tracker0 0 Line Switch0 0 Dottical Shaft Encoder0 0 Ultrasonic Range Finder0 0 Light Sensor0 0 J-Wire Servo (maximum 2)0 0 D 0 0
Bar 1x25 holes160-tooth gearsAngles084-tooth gearsC-Channel084-tooth gearsC-Channel019-tooth rack gearC-Channel0Worm gearsCubr Input/Output/Motors024-tooth bevel gearInput/Output/Motors0Worm wheelLine Tracker0Worm wheelLine Tracker0Differential frameLine Tracker0Differential frameLine Tracker0Claw kit assemblyLinit Switch0Claw kit assemblyDifferential Encoder0Claw kit assemblyOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Conveyor-belt Parts (10 inLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Angles084-tooth gearsC-Channel019-tooth rack gearC-Channel019-tooth rack gearGussets - any type0Worm gearsLine Tracker0Worm gearsInput/Output/Motors024-tooth bevel gearLine Tracker0Worm wheelLine Tracker0Differential frameLine Tracker0Differential frameLine Switch0Delrin Slide Track (pair)Limit Switch0Claw kit assemblyPotentiometer0Claw kit assemblyOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Conveyor-belt Parts (10 inLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
C-Channel 19-tooth rack gear Gussets - any type 0 19-tooth rack gear Gussets - any type 0 Worm gears Input/Output/Motors 0 24-tooth bevel gear Line Tracker 0 24-tooth bevel gear Line Tracker 0 Differential frame Line Tracker 0 Defrin Slide Track (pair) Bumper Switch 0 Claw kit assembly Imit Switch 0 Claw kit assembly Potentiometer 0 Conveyor-belt Parts (10 in Ultrasonic Range Finder 0 Tank Tread Parts (10 in J-Wire Servo (maximum 2) 0 2.75" Wheel
Gussets - any type0Worm gearsInput/Output/Motors024-tooth bevel gearLine Tracker024-tooth bevel gearLine Tracker0Differential frameBumper Switch0Differential frameBumper Switch0Differential frameInit Switch0Differential frameInit Switch0Differential frameLimit Switch0Claw kit assemblyPotentiometer0Claw kit assemblyPotentiometer0Claw kit assemblyOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Chain Links 10 inchJ-Wire Servo (maximum 2)02.75" Wheel
Input/Output/Motors 0 24-tooth bevel gear Line Tracker 0 Worm wheel Bumper Switch 0 Differential frame Bumper Switch 0 Differential frame Limit Switch 0 Delrin Slide Track (pair) Imit Switch 0 Claw kit assembly Potentiometer 0 Winch and pully Parts Optical Shaft Encoder 0 Conveyor-belt Parts (10 in Ultrasonic Range Finder 0 Chain Links 10 inch Light Sensor 0 Chain Links 10 inch 3-Wire Servo (maximum 2) 0 2.75" Wheel
Line Tracker0Worm wheelBumper Switch0Differential frameBumper Switch0Differential frameLimit Switch0Delrin Slide Track (pair)Imit Switch0Claw kit assemblyPotentiometer0Winch and pully PartsOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Tank Tread Parts (10 inLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Bumper Switch0Differential frameLimit Switch0Delrin Slide Track (pair)I hard Switch0Delrin Slide Track (pair)Flashlight0Claw kit assemblyPotentiometer0Winch and pully PartsOptical Shaft Encoder0Winch and pully PartsUltrasonic Range Finder0Tank Tread Parts (10 inLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Limit Switch0Delrin Slide Track (pair)Flashlight0Claw kit assemblyPotentiometer0Winch and pully PartsOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Tank Tread PartsLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Flashlight0Claw kit assemblyPotentiometer0Winch and pully PartsOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Tank Tread PartsLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Potentiometer0Winch and pully PartsOptical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Tank Tread PartsLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Optical Shaft Encoder0Conveyor-belt Parts (10 inUltrasonic Range Finder0Tank Tread PartsLight Sensor0Chain Links 10 inch3-Wire Servo (maximum 2)02.75" Wheel
Ultrasonic Range Finder 0 Tank Tread Parts Light Sensor 0 Chain Links 10 inch 3-Wire Servo (maximum 2) 0 2.75" Wheel
Light Sensor 0 Chain Links 10 inch 3-Wire Servo (maximum 2) 0 2.75" Wheel
3-Wire Servo (maximum 2) [0. [2.75" Wheel
2-Wire Motor (maximum 2) 0 4" or 5" Wheel
Misc. Fasteners that do

· · · · · · · ·

· 1.

ſ

Design Modifications

Design Modifications Chart

Group: 1-3

Use this chart to document all modifications to your final design solution. Describe the design problem requiring modification and your proposed solution. Then sketch and annotate each design modification. List changes to vex parts list and pseudocode changes. <u>Sign and date all entries.</u>

	Window Street				
	Desigr	n Modification Ske	etch (Annotated)		
Change H C-C	esto Vex Parts Li boscis	ist (Include parts a CEMOVED MILS OD	added or removed	I from parts list)	
	t changes to pse	audocode or write	new pseudocode	and attach	
N/A	f changes to pse	addcode of write	new pseudocode		

Group: 1-3

Use this chart to document all modifications to your final design solution. Describe the design problem requiring modification and your proposed solution. Then sketch and annotate each design modification. List changes to vex parts list and pseudocode changes. <u>Sign and date all entries</u>.

Explain the Problem and Proposed Solution
So our marbles agen't living up right and the marbles are
going everywhere, so we're goin to add a 12" long side
track on top of the c channel

Group:

2

Use this chart to document all modifications to your final design solution. Describe the design problem requiring modification and your proposed solution. Then sketch and annotate each design modification. List changes to vex parts list and pseudocode changes. Sign and date all entries.

Explain the Problem and Proposed Solution	
Our intake roller wasn't working out becau	se it would
Short two markes at a time. On sollution	is switching
the intoxe collex and replace, and 2-wive mos	tor for
a ausset pivot a and a serve motor.	
a gusset, pivot c and a server motor.	

Changes Approved by Teacher:

Group: 1-3

Use this chart to document all modifications to your final design solution. Describe the design problem requiring modification and your proposed solution. Then sketch and annotate each design modification. List changes to vex parts list and pseudocode changes. <u>Sign and date all entries.</u>

Explain the Problem and Proposed Solution	
The serve motor wasn't working out for us so we're	
going to change it back to a 2-wire motor and the	
ausset pivot c wasn't working out for us either so well	
doing back to an intake roller	
	-

		Design	Modificatio	on Sketch	(Annotated	I)		in englannighe
		-						
		Ollo				0		
	1. Aal	Did-IN	10	11 21		ii	iiii	11
		Tike						
	4	XFI						
		TP						
								TT
	ii		ii i	1		ii		ii
le cadra plana en es	Changes to	Vex Parts Lis	t (Include)	narts adde	d or remov	ed from pa	rts list)	
emaili	M ALS	iod pin	A C	Surto uuuo	u or rome.			
endur	n son	o motor			1	/		
Wing	intake	idler			0	0		
indina	A-Wille	, motor .	- MI	stor	CON	trokv		1.1
1	1997 - 1998 1997 - 1999	·	1.10		-			
								- The
	List ch	anges to pseu	idocode or	write new	pseudoco	de and atta	ch.	
								-
Section 21				-				
	3					De estru		
						1 200	2.	
	1.10		Sec. 1		-			-
					·····			10
Modification	ns must be ap	proved by tead	cher prior to	work com	mencing.			,
			10	/				1

Changes Approved by Teacher:

Date: 21

Group: 3-

Use this chart to document all modifications to your final design solution. Describe the design problem requiring modification and your proposed solution. Then sketch and annotate each design modification. List changes to vex parts list and pseudocode changes. Sign and date all entries.

Marble	50	THE	ligh	t Se	nsor.	Lan	Icad	iter	DACE	.,t	
icads	17	It he	puld	let	1+	30c					-
						un and a second					
			2112	in the second							
		De	sian M	odifica	tion Sket	ch (Anr	notated)		-	Contraction of the	
			Sign m	Guinea	aron ones		lotateaj	1			
					111-						+
											-
+++					<u>†-†-</u>				-+-+-+		+
				ļ			.0				1
				150	200						-
	SIL	Th	E LISY		4	a					++
		10H									
			500	00			i				
	-			7	<u> </u>		Į	<u> </u>			4
		11		1			1.1.1				1
							1	1			1
											- num
· + +								-i-i			+
C	hanges to	Vex Par	s List (Includ	e parts a	ded or	removed	from pa	arts list)	nes hann i nenii i	
ac	Idias	Seci	10	1	e parte u						
			-	V		2	13 1 2				
	1321 8.0										8
and the second		Carry F			1	199	Sector Sector				
	5										
	List ch	nanges to	pseud	ocode	or write r	iew pse	udocode	and atta	ch.	1.12	
set se	X VO (S	RIVO	moto	W,#	=);	12.5	1844				
whit (.S	5)		_							-	
setser	UO(SPA	Joma.	tor, 7	7);			2				
			_								
			-				And and a second	-			-
and and a		-				The Property	-	-		-	-
					to mode a		ling			/	1